Inside the WSDL & Web Services Proxies

Why do we need to know?

At the end of the day when the dust settles, there will be only a handful of Web Service Providers on the
internet and most of uswill remain as “consumers’. We can better utilize Web Services only when we
understand the “Contract” of the services. So understanding the Web Service contract (spelled in WSDL) is
the key to leverage a Web Service.

Though there are tools available to generate a proxy (like WSDL.EXE from Microsoft’s .NET Toolkit),
having a better understanding of the WSDL and the proxy always helps in troubleshooting issues while
consuming Web Services.

In thisarticle we will consider areal Web Service: Scandinavian Airline (SAS) Flight Status Web Service
to understand the WSDL and then we will dissect the proxy that is generated for the SAS Hight Status Web
Service.

All code samples presented in this article are developed in C#.
Scandinavian Airlines “ Flight Status Web Service”

The flight status Web Service for Scandinavian Flight Status went live recently and can befound in the
UDDI directory by searching for “Business Name — Scandinavian”.

Thelocation of “.asmx” for this Web Serviceis:

http://webservi ces.scandinavian.net/flightstatus/fli ghtservice.asmx.

Now, let ustake alook at the Web Service Definition Language (WSDL) document for the above Web
Service. A WSDL document defines the Web Service as a collection of pre-defined elements. Aswe all
know we can get the WSDL using a web browser by adding a query “AVSDL" at the end of the above
URL.

The WSDL document for the Web Services looks as follows:

<?xm version="1.0" encodi ng="utf-8" ?>
<definitions xmns:s="http://ww.w3. org/2001/ XM_Schem"
xm ns: http="http://schenmas. xm soap. org/wsdl / http/"
xm ns: m me="http://schemas. xm soap. or g/ wsdl / mi ne/"
xm ns:tne"http://mcrosoft. com wsdl / m ne/text Matchi ng/"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"
xm ns: soapenc="htt p://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns:sO="http://tenpuri.org/" targetNamespace="http://tenpuri.org/"
xm ns="http://schemas. xm soap. org/ wsdl / ">
<types>

<s:schema attributeFornDefaul t="qualified"

el ement For mDef aul t =" qual i fi ed"

t ar get Namespace="http://tenpuri.org/">

<s: el ement name="GetFlight Status">
<s:conpl exType>
<s:sequence>
<s:element m nCccurs="1" maxOccurs="1"
name="nFl i ght No" type="s:int" />
<s:element m nCccurs="1" maxOccurs="1"
name="nDayf fset"” type="s:int" />
</ s: sequence>
</s: conmpl exType>
</s:el ement >
<s: el ement nanme="GCet Fl i ght St at usResponse" >

<s:conpl exType>
<s:sequence>
<s:element m nCccurs="1" maxOccurs="1"
name="Get Fl i ght St at usResul t"
nillable="true" type="s:string" />
</ s: sequence>
</s: conmpl exType>
</s:el ement >
<s:elenment nane="string" nillable="true" type="s:string" />
</ s: schema>
</types>
<message nane="Get Fl i ght St at usSoapl n" >
<part nane="paraneters" el enent="s0: Get Fl i ght Status" />
</ message>

Fig 1: WSDL document for the Scandinavian Flight Status Web Service (shown partially).

Now let ustake alook at the WSDL document in detail to understand the “ Web Service Contract”!

Understanding the contract:

The “collapsed” view of the full WSDL document (generated in previous section) looks as follows:

<?xm version="1.0" encodi ng="utf-8" ?>

<definitions xmns:s="http://ww.w3. org/ 2001/ XM_Schem"

xm ns: http="http://schemas. xm soap. org/wsdl / http/"

xm ns: m ne="http://schemas. xm soap. org/ wsdl / mi me/"

xm ns:tne"http://mcrosoft.com wsdl / m ne/text Mat chi ng/"

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "

xm ns: soapenc="htt p://schemas. xml soap. or g/ soap/ encodi ng/ "

xm ns:sO="http://tenpuri.org/" targetNamespace="http://tenpuri.org/"
xm ns="http://schemas. xm soap. org/ wsdl / ">

+ <types>

+ <message nane="GCet Fl i ght St at usSoapl n">

+ <message nane="Get Fl i ght St at usSoapQut " >

+ <message nanme="GCet Fl i ght St at usHtt pGetlIn">

+ <message nanme="GCet Fl i ght St at usHtt pGet Qut ">

+ <message name="Get Fl i ght St at usHt t pPost I n" >

+ <message nane="Get Fl i ght St at usHt t pPost Qut " >

+ <port Type nane="Fli ght Servi ceSoap" >

+ <port Type nane="Flight Servi ceHtt pGet" >

+ <port Type nane="Flight Servi ceHtt pPost" >

+ <bi ndi ng nanme="Fl i ght Servi ceSoap" type="s0: Fli gh Servi ceSoap" >

+ <bi ndi ng name="Fl i ght Servi ceHtt pGet" type="s0: Flight ServiceHttpGet">
+ <bi ndi ng name="Fl i ght Servi ceHtt pPost" type="s0: Fl i ght Servi ceHtt pPost" >
+ <servi ce name="Fl i ght Servi ce">

</ definitions>
Fig 2: “Collapsed” view of the full WSDL document.

By examining the above document structure, one can see that there are five unique element types under the
root node “definitions’ (the root nodeis*“definitions’ after the fact that WSDL issimply a set of definitions
that define a Web Service). They are

types
message
portType
binding
service

NN IIN

Apart from the above e ements there is another important element that is used in defining a Service, the
“port”. Including this sixth element we have a total of six element typesin a WSDL document.

Let ustake alook each of them to understand what they really are and what we can decipher from them.
1. types

The types element encloses data type definitions that are relevant for the exchanged messages between the
proxy and the Web Service. For maximum interoperability and platform neutrality, WSDL prefers the use
of XSD asthe canonical type system.

The “types’ element from SAS Web Service WSDL is shown in Fig 3. Aswe can see, there are three
elements: GetFlightStatus, GetFlightStatusResponse and string.

<types>
<s:schema attributeFornmDefaul t="qualified"
el ement For mDef aul t =" qual i fi ed"
t ar get Namespace="http://tenpuri.org/">
<s:el ement name="GetFlight Status">
<s:conpl exType>
<s: sequence>
<s:element m nCccurs="1" nmaxOccurs="1"
name="nFl i ght No" type="s:int" />
<s:element m nCccurs="1" maxOccurs="1"
name="nDayOf fset"” type="s:int" />
</ s: sequence>
</s: conmpl exType>
</s:el ement >
<s: el ement nanme="GCet Fl i ght St at usResponse" >
<s:conpl exType>
<s: sequence>
<s:element m nCOccurs="1" maxCccurs="1"
name="Get Fl i ght St at usResul t"
nillable="true" type="s:string" />
</ s: sequence>
</s: conpl exType>
</s:el ement >
<s:el enment nane="string" nillable="true" type="s:string" />
</ s: schema>
</types>

Fig 3: types element from SAS Web Service WSDL

Aswe can see, the smple type definitions (the “type” attribute in “dement” node) are referring to
namespace “s’ which is nothing but: http://www.w3.0rg/2001/XML Schema.

The structure of “ GetHightStatus’ is defined as a sequence of two integers: “nFlightNo” and “nDayOffset”.
The element “ GetHightStatusResponse” is defined as a “string” by name * GetFlightStatusResult”.
Thethird and last dlement “string” is defined asa “string” type.

2. message

Messages are the abstract definition of the data being exchanged between the proxy and the Web Service.
The first message element from SAS Web Service WSDL is shown in Fig 4 below.

- <message name="GetFlightStatusSoapIn"=
<part name="parameters" element="s0:GetFlight5tatus" />
</messagex

Fig 4: First message e ement from SAS Web Service WSDL document.

Aswe can see, the message element contains one or more logical parts. Parts are a flexible way of
describing the logical abstract content of a message or to put it Simply, a part may represent a parameter in

amessage.

In our example from fig4, we can see the element “part” contains an element type “ GetFlightStatus’” from
namespace “s0”, which in turn points to the same document with the definition (some times the same
document can bereferred to as“tns’): xmlns:sO="http://tempuri.org/" targetNamespace=http://tempuri.org/.

The relationship between message and types is shown below in Fig 5:

- <typess

- «s:schema attributeFarmbefault="qualified" elementFormDefault="qualified" targe
- =<s:element name="GetFlightStatus"=

- <s:complexTypes
- <SiseqQUENCE:=
<z element minQccurs="1"
<z element minQccurs="1"
</s sequences
= /s complexTypes
<2 element=

axOccurs="1" name="nFlightNo" type="s:int"
xOccurs="1" name="nDayOffset" type="s:in

<z element name="string" nillable="true"
/s schemaz
< types=
- =message name="GetFlightStatusSoapln":

zpart name="parameters" element£"s0:GetFlightStatus" /=

</message=

ype="s:string" /=

Fig 5: Relationship between “ message’ and “types’
So from the above relationship we can derive:

The message with name “ GetFlightStatusSoapln” contains a part called “parameters’ of type
“ GetFlightStatus’ element which is nothing but a sequence of two integers: namely “nFHightNo” and
“nDayOffset”.

There could be messages that contain parts with simple types like “string” . In that case the part may point
to dement types from the XSD namespace as shown in Fig 6 below.

- «<message name="GetFlightStatusHttpGetIn"=
<part name="nFlightNo" type="s:string" /=
<part name="nDayOffset" type="s:string" /=

=/messagex>
Fig 6: message with simple types defined as parts.

Finally there could be many messages present in a service definition. In our example there are six different
messages defined: a set of two messages (Request and Response), for the protocols “SOAP”, “HTTP-
GET” and “HTTP-POST".

3. portType

A portTypeis defined as a set of abstract “operations’ that involves messages. The operations are nothing
but the transportation primitives that a network-end point can support, such as a * Request-Response”.

<message name="GetFlightStatus

<message name="GetFlightStatusHt

- =portType name="FlightServiceSoap"

- =operation name="GetFlightStatus">
zinput mESSage='E5I]:GetFIightStatUSSDapIn" f::}

>

tpPostIn'=
PostOut"=

+ =message name={GetFlightStatusSoapIn">

+ zmessage name:'EﬁetFIightStatusSuapDut'}:

+ =message name="GetFlightStat ttpGetln'>
+ <message name="GetFlightStat ttpGetOut"=>
+

+

zoutput messageE"s0:GetFlightStatusSoapOut”
</operationz
=/portType=

Fig 7: Relationship between portType and message.

The relationship between portType and message is shown pictorially in Fig 7. There are three different
portTypes defined in the SAS Web Service WSDL document and each portType represents an operation-
message combination for different protocols.

So aportType = oper ation + messages
4. binding

A binding defines message format and protocol details for operations and messages defined by a particular
portType. Let ustake alook at the first binding element from our WSDL to understand what it means:

- <hinding name="FlightServiceSoap" type="s0:FlightServiceSoap">
<soap:binding transport="http:/ /schemas.xmlsoap.org/soap/http" style="document" />
- <operation name="GetFlightStatus":=
<soap:operation soapaction="http:/ /tempuri.org/GetFlightStatus" style="document" />
- =input>
<soap:body use="literal" /=
</ input=
- =output=
<soap:body use="literal" /=
<foutput=
=/operationz
</hinding=

Fig 8: SOAP binding definition from SAS Web Service WSDL document.

There are some important points that we need to observe in the binding e ement:
?? Thehbinding element refersto the portType (FlightServiceSoap) using “type’ attribute.
?? Thebinding element isthe first eement to specify a“protocal” (SOAPin Fig 8) in the WSDL document so
far!

An operation element within a binding el ement specifies binding information for the operation specified in
that particular binding’s portType. Since operation names are not required to be unique, the name attribute
in the operation e ement might not be enough to uniquely identify an operation. In that case, providing the
name attributes of the corresponding input and output € ements should identify the correct operation
(Method Overloading?!).

So abinding = protocol + portType

5. service

A service element is a collection of related ports and a port defines an individual network endpoint by
specifying a single address for a binding.

Thefirst “port” element’s definition in the service element is shown below in Fig 9.

- <poart name="FIigi1tServiceSuap" binding="s0:FlightServiceSoap">
<soap: address location="http:/ /webservices.scandinavian.net/flightstatus /flightservice.asmx»" /=
</port=

Fig 9: port dement definition.

Aswe can see, the port contains the URL (the network endpoint) of the Web Service and also has a
reference to the binding element as an attribute.

So aport = binding + network address

With this background information about the “port”, let ustake alook at the “service” element:

+ <portType name="FlightServiceHttpPost">
+ zhinding name="FlightServiceSoap" type{s0:FlightServiceSoap":)
+ <hinding name="FlightServiceHttpGet" type:“sl]:Fligwicththet'b

+ <hinding name="FlightServiceHttpPost" type="s0:Flight8grviceHttpPost">
- <service name="FlightService">
- =port name="FlightServiceSoap" hinding={s0:FlightServiceSoap":)
<soap: address location="http:/ /webservices.scandinavian.net /flightstatus /flightservice.asmx" /=
=/port=
- =port name="FlightServiceHttpGet" binding="s0:FlightServiceHttpGet":
<http:address location="http:/ /webservices.scandinavian.net/flightstatus /flightservice.asmx" /=
</port=
- =zport name="FlightServiceHttpPost" binding="s0:FlightServiceHttpPost">
<http:address location="http:/ fwebservices.scandinavian.net/flightstatus /flightservice.asmx" /=
</part>
< /servicEs

Fig 10: service element definition.

Asshown in the Fig 10, a serviceisa collection of related but mutually exclusive ports. Which means that
all the three ports bel ong to the same service but none of them really communicate with each other. Also all
these related ports provide semantically equivalent behavior by allowing Web Service consumersto choose

a particular port to communicate with the Web Service based on protocol implementation or some other
criteria

With this background, now we understand the Web Service contract spelled in WSDL. To summarize our
understanding, we can define the SAS Flight Status Web Service contract in plain English as below:

SAS Flight Status Web Service

Accepts two input parameters (of type “int”)

Returns one parameter (of type “string”)

Address of the Web Serviceis: http://webservices.scandinavian.net/fli ghtstatus/flightservice.asmx
Allows us to choose the protocol from SOAP, HTTP-GET and HTTP-POST

NNIN

With thisinformation, we are ready to move on to “consume’ this Web Service!

Dissecting the proxy:

In this part of the article let’ s dissect the proxy to understand it better. We can usethe “ WSDL.EXE” utility
to generate a proxy, but for this one time let us hand-code the proxy to have a better understanding!

Let us keep the Ul for this Web Application simple: a Web Form, which accepts “Flight Number” and
“ Day offset” and a text box to display the returned XML in the form of a string. The Ul looks like the
figure shown below:

..ahl:tp:,.-",.-"lncalhnst,.-"sas,.-"wehfnrml.asp:-: _IEllil
File Edit ‘Wiew Fawaorites Tools Help |ﬁ
HBack » = - (D 7 | [Personal Bar <ZSearch 22
address @ htkp: fflocalhost fsasfwebforml asps j ao
Flight Mumber l"r':":' for ITI:IdEI'_-,-' -

Get Flight Status

Feturmed 2L

=l
|@ Cone l_ l_ l_ (0 Local intranet 4

Fig 11: Web Form for SAS Web Service proxy

The “code behind” page for thisweb form is“ WebForml.aspx.cs’. Now, let us decide if we really want a
separate “proxy” dll that contains code to invoke the Web Service, or if it is okay to add that functionality
in the “code behind” fileitsalfl Assuming that we are not re-using the code to invoke the SAS Flight Status
Web Service anywhere el se and also since we are hand-coding the proxy, let usincorporate the proxy code
in the “code behind” file, which is* WebForm2l.aspx.cs’.

Web Service Client Rules for Inheritors

Rule#l

Any Web Service client using ASP.NET needs to declare a class deriving indirectly from
WebClientProtocol. | used the word “indirectly” because, there are sub classes under WebClientProtocol
that are specific to the protocol that we decided to use while communicating the Web Service. They are
?? SoapHttpClientProtocol for SOAP

?? HttpGetClientProtocal for HTTP-GET

?? HttpPostClientProtocol for HTPP-POST

All the three classes mentioned above are derived directly or indirectly from WebClientProtocol class.

For example:
public class SoapCall : System Web. Servi ces. Protocol s. SoapHt t pCl i ent Pr ot ocol

Rulett 2

While implementing SOAP protocol to consume the Web Service, we need to define 2 important attributes
for that class:

WebServiceBindingAttribute:

This attribute’s“ Name”’ property maps to a specific binding (FlightServiceSoap in our example) from the
WSDL document (shown in Fig 12). Aswe have seen earlier abinding is like an “interface’” and should be
implemented with each protocol.

+ =<hinding name={FlightServiceSoap) type="s0:FlightServiceSoap":>
+ =binding name="FlightServiceHttpGet" type="s0:FlightServiceHttpGet">
+ =hinding name="FlightServiceHttpPost" type="s0:FlightServiceHttpPost">

Fig 12: binding mapping to the WebServiceBindingAttribute
In our example it would be:

[Syst em Web. Servi ces. WebSer vi ceBi ndi ngAttri but e(Name="Fl i ght Servi ceSoap",
Namespace="http://tenpuri.org/")]

SoapDocumentM ethodAttribute:
This attribute holds the value of the “ soapAction” attribute of operation element defined in the
“HightServiceSoap” binding. Shown in the Fig 13 below.

- =binding name="FlightServiceSoap" type="s0:FlightServiceSoap">
<soap:binding transport="http:/ fschemas.xmlsoap.org/soap/http" style="document" /=
- zoperation nane="GetFlightStatus"=
<soap;operation soapaction="thttp:/ ftempuri.org/GetFlightStatus!' style="document" />
- Zinputs
<soap:body use="literal" />
</input=
- <outputs>
<soap:body use="literal" />
<foutput=
<foperationz
</Finding=

Fig 13: SoapDocumentM ethodAttribute mapping in WSDL document

In our example it would be:

[Syst em Web. Servi ces. Protocol s. SoapDocurent Met hodAttri bute("http://tenpuri.org/
Get Fl i ght St atus", Use=System Web. Servi ces. Descri pti on. SoapBi ndi ngUse. Literal,
Par anmet er St yl e=Syst em Web. Servi ces. Prot ocol s. SoapPar anet er St yl e. W apped)]

The other two properties “Use” and “ParameterStyle” are set to the default values. These parameters are
used to set the format of the SOAP request or response sent to or from the Web Service. Hence this
attribute is optional.

Rule# 3

If weareusing HTTP-GET protocol to invoke the Web Service, ReturnFormatter property must be set to
XmlReturnReader and ParameterFormatter property must be set to UrlParameterWriter in
HttpMethodAttribute attribute.

This attribute is required to indicate the types that serialize parameters sent to a Web Service method and
read the response from the Web Service.

In our case it would be as follows:

[Syst em Web. Servi ces. Protocol s. Ht t pMet hodAt t ri but e(t ypeof (Syst em Web. Servi ces. P
rotocol s. Xm Ret ur nReader),
t ypeof (Syst em Web. Servi ces. Protocol s. Url ParameterWiter))]

Rulet# 4

Web Service clients using HTTP-POST protocol must set ReturnFormatter to XmlReturnReader and
Parameter Formatter to HtmlFormParameterWriter in HttpMethodAttribute attribute.

In our caseit would look like bel ow:

[Syst em Web. Servi ces. Protocol s. Ht t pMet hodAt t ri but e(t ypeof (Syst em Web. Servi ces. P
rotocol s. Xm Ret ur nReader),
t ypeof (Syst em Web. Servi ces. Prot ocol s. H ml For nParaneter Witer))]

With the above rulesin place we can now hand-code “proxy” code in code-behind file to invoke the Web
Service to get the Flight Status.

| have defined the following three classes to implement each of the above-mentioned protocol.

For SOAP protocol:

/1 Thi s inpl enents SOAP
[Syst em Web. Servi ces. WebSer vi ceBi ndi ngAttri but e(Name="Fl i ght Servi ceSoap",
Namespace="http://tenpuri.org/")]
public class SoapCall : System Web. Services. Protocol s. SoapHt t pCl i ent Prot ocol
{

public SoapCall (string url)

{
this. Ul = url;

[Syst em Web. Servi ces. Protocol s. SoapDocurent Met hodAttri bute("http://tenpur
i.org/ GetFlightStatus",
Use=Syst em Web. Servi ces. Descri pti on. SoapBi ndi ngUse. Li teral,
Par anmet er St yl e=Syst em Web. Servi ces. Prot ocol s. SoapPar anet er St yl e. W apped)]
public string GetFlightStatus(int nFlightNo, int nDayCffset)

object[] result = this.Invoke("GetFlightStatus", new object []
{nFli ghtNo, nDayCffset});
return (string)(result[0]);
}

For HTTP-GET:

/1 This inplenents HTTP GET
public class HitpGetCall : System Web. Services. Protocol s. Ht pGet Cl i ent Prot ocol
{

public HttpGetCall (string url)

{
this. Ul = url;

}
[Syst em Web. Servi ces. Prot ocol s. Ht t pMet hodAt t ri but e(t ypeof (Syst em Web. Serv
i ces. Protocol s. Xm Ret ur nReader),
t ypeof (Syst em Web. Servi ces. Protocol s. Url ParaneterWiter))]
[return: System Xml . Serialization.Xm RootAttribute("string",

Namespace="http://tenpuri.org/", IsNullabl e=true)]
public string GetFlightStatus(string nFlightNo, string nDayOf fset)
{

object result = this.lnvoke("GetFlightStatus", this. Ul +
"/ GetFlightStatus", new object [] {nFlightNo, nDayOffset});
return result.ToString();
}

}
For HTTP-POST protocol:
/1 Thi s inpl enents HTTP- POST

public class HttpPostCall
Syst em Web. Servi ces. Protocol s. Ht t pPost Cl i ent Pr ot ocol

{
public HttpPostCall (string url)
{
this. Ul = url;
}

[System Web. Servi ces. Protocol s. Ht t pMet hodAt t ri but e(t ypeof (Syst em Web. Serv
i ces. Protocol s. Xm Ret ur nReader),
t ypeof (Syst em Web. Servi ces. Prot ocol s. Ht ml For nParaneter Witer))]
[return: System Xml . Serialization. Xm RootAttribute("string",

Namespace="http://tenpuri.org/", IsNullablezrue)]
public string GetFlightStatus(string nFlightNo, string nDayOf fset)
{

return (string)this.lnvoke("GetFlightStatus", this.Ul +
"/ GetFlightStatus", new object [] {nFlightNo, nDayOffset});

}
}

In al the cases mentioned above, you could find one similarity: the Invoke method. This call will invoke
the actual web service using corresponding protocol. Also as we can see the Invoke method takes the Web
Service Method name and an array of objects containing parameters to pass to the remote Web Service.
Oneimportant thing to keep in mind isthat the order of the valuesin the array must correspond to the order
of the parametersin the calling method.

And also we have to make sure the following namespaces are defined in the “ code behind” file:

usi ng System Web. Servi ces. Prot ocol s;
using System Xml . Serialization;
usi ng System Web. Servi ces;

Now, we are all set to consume the Web Service. The code snippet below shows how to invoke the Web
Service using the SOAP protocol:

SoapCal | obj SP = new
SoapCal | ("http://webservices. scandi navi an. net/flightstatus/flightsrvice.asnx")

1"I i ghtl nfo. Text = obj SP. GetFli ght Status(i nt. Parse(flightNo. Text),
i nt.Parse(offset.Sel ectedltem Val ue));

(For detailed code please take a look at the support material)
| did not add any processing to parse the XML to show the results sinceit is out of the scope of thisarticle.

But basically we are ready to communicate with the Scandinavian Web Service for SAS Flight Status. You
can also verify the results using the SAS Flight Status page.

Test Data and Result XML

To test your Web Service Consumer code, you can use the following test data:

For testing purposes | have considered the Flight No# SK400, which is a scheduled flight from
STOCKHOLM, SWEDEN (ARN) to COPENHAGEN, DENMARK (CPH). Y ou have to enter “400” for
the flight number (usually they are SK400, but we need to pass in only integer for flight number).

You can find all Scandinavian flight codes at SAS Website provided in related links.

Flight Status check on the above flight will return a XML string that looks like bel ow:

- =Flight FlightMo="400" Date="20011007" Cancelled="false"=
- <5egmentsx:

- <5egment Index="0"=
<From=CPH</Fromz
<To=ARM</To=
<5TD=07:30=</STD=
<S5TA=08:40=/ST A=
<ETD=--:--</ETD=
<ETA=08:34</ETA
<ATD=072:28</ATD>
<ATA=08:30</AT A

=/Segment>

= /Segments=

</Flight=

“TD” and “TA” represent “Time of Departure” and “Time of Arrival” respectively, and “S’, “E” and “ A”
as prefix represents “ Scheduled”, “Estimated” and “ Actual” respectively.

Summary

In most of the cases, we need no knowledge of the above stuff on how the WSDL is deciphered into proxy
since we use the WSDL .EXE tool. However, the knowledge of how the proxy works would be helpful in
some cases when we want to extend the Web Service' s functionality by adding more layers of processing in
the proxy to give a customized output. The best example would be deciphering the airport codes in the
above SAS FHlight Status XML!

In either case better understanding of WSDL and proxy’s make our life easy as Web Service Consumers.

Related Links:

WSDL Specification

SOAP Specification
Scandinavian Air Lines Web Site
UDDI Organization

NNIN

