[PUBLISHING]

Visual SourceSafe 2005 Software
Configuration Management in
Practice

Best practice management and development of
Visual Studio .NET 2005 applications with this
easy-to-use SCM tool from Microsoft

Alexandru Serban

Visual Sourc
Software Configuration Mana

ager

Eaale e

Chapter 3
"Creating a Service-Oriented Application”

In this package, you will find:

A Biography of the authors of the book

A preview chapter from the book, Chapter 3 “Creating a Service-Oriented Application”
A synopsis of the book’s content

Information on where to buy this book

About the Author

Alexandru Serban
Alexandru Serban is the founder and CEO of Unievo, a new software development company.

Previously, he worked as a .NET Software Architect with Softwin and Microsoft on extending
Visual Studio for enterprise infrastructure projects. In 2004, he co-authored Pro .NET 1.1 Network
Programming, Second Edition.

Alexandru has been driven by the computer revolution ever since he can remember. Now he plans
to be a part of it.

When not planning to take over the word, he likes to drive and travel, in the summer to the sea and
in the winter to the mountains, where he hits the slopes with his snowboard.

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

About the Reviewers

Alin Constantin

Alin Constantin graduated from the Faculty of Automatic Control and Computers of the
Politehnica University of Bucharest in 1997. He worked at Crinsoft S.R.L., developing hotel
management and user interface automation software. Then in 1999 he joined Microsoft. For
almost 7 years he focused on developing Visual SourceSafe and source control integration in
Visual Studio.

Dragos Brezoi

Dragos Brezoi started programming to create an application for processing and adding extra
effects to his guitar's sound. Several years later, he got a Masters Degree in Computer Science
from the Politehnica University of Bucharest, and is now researching for a Ph.D. in Advanced
Automatics. Dragos worked for several years in the industrial automation field as a programmer
for PLC and DSP programming to SCADA, OPC, and DCS solutions. Dragos co-authored GDI+
Custom Controls with Visual C# 2005 (Packt Publishing, 2006), and he currently works for
Motorola TTPCom Product Group (Denmark), developing a next-generation embedded

software framework.

Jean-Baptiste

Jean-Baptiste Lab discovered computers at the age of 12, when he started writing demos in
assembly to impress his friends. After a scientific-oriented basic education, he obtained a B.Sc. in
Computer Science at Portsmouth University, UK in 1998, and went on to achieve an M.Sc. in
Mathematics and Computing at the University of Besancon, France. Expatriated in Denmark,
Jean-Baptiste has been working in the mobile phone industry since 2001, touching various fields
spanning from GSM Protocol Stack simulation to software architecture, build systems, and
configuration management.

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Visual SourceSafe 2005 Software Configuration
Management in Practice

Software Configuration Management (SCM) is one of the first skills a serious developer should
master, after becoming proficient with his or her development tools of choice. Unfortunately this
doesn't always happen because the subject of SCM is not commonly taught in academic or
company training.

Although software is not a material thing, as you cannot touch it, smell it, or taste it, building
software can be as complex as building physical things such as cars or planes, if not more so. The
main difference between the two worlds lies in the limitations you confront. In the world of
developing software there are no physical limitations—the only limit is your imagination.
However, all this freedom can have a downside. A good TV commercial once stated "Power is
nothing without control"—if you do not control it wisely, it may start working against you. When
developing software, you need to have a manageable team development effort, track and maintain
the history of your projects, sustain parallel development on multiple product versions, fix bugs,
and release service packs while further developing the applications.

This is where the concept of Software Configuration Management (SCM) comes into play, dealing
among other things with source code versioning, tracking development evolution, building, and
releasing. Putting it in simple terms, SCM is about getting the job done safer, faster, and better.
While trying to keep the theory to a minimum, this book starts by teaching you what SCM is, why
it is important, and what benefits you get by using it, either by working individually or by being
part of a team. You will find this part very valuable if you're new to the concept of SCM, because
you will be setting your base for understanding what happens in the rest of the book.

Then the book concentrates on the Microsoft Visual SourceSafe 2005 SCM tool and the best
practices used to manage the development and evolution of Visual Studio .NET 2005 applications.
You will learn the theory by going through a journey, in which we will actually develop a new
application, starting from designing its specifications and ending with releasing it and completing
the Software Development Lifecycle (SDLC).You will learn how the SCM concepts are applied
by Visual SourceSafe 2005 by developing Orbital Hotel, a Service-Oriented Application hotel
reservation system.

You will learn how to use the team cooperation features in Visual SourceSafe 2005 with the help
of John and Mary, two fictional team members who have been assigned to implement various
project components.

The end of the book deals with SourceSafe administration tasks. It describes SourceSafe database
creation, management, and maintenance, how to secure the database, how to create users and
assign user rights, and how to manage projects and project settings.

Additional material on how to customize SourceSafe to suit your development style is available at
http://www.packtpub.com/visual-sourcesafe-2005/book. You can visit Orbital Hotel
online at http://orbitalhotel.alexandruserban.com/.

I hope you will find this book a great resource about Visual SourceSafe 2005, and | hope you will
enjoy reading it as much as | enjoyed writing it!

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

What This Book Covers

Chapter 1 teaches you the basic terminology and concepts used in the SCM world, and how SCM
integrates in the Software Development Lifecycle.

Chapter 2 introduces you to Microsoft's SCM tool for small and medium teams: Visual
SourceSafe 2005. You'll learn what this product is made of, and what new features and
improvements it has over the previous versions.

Chapter 3 introduces Orbital Hotel, a hotel-reservation system application, which will be used in
the next chapters as a case study for developing Visual Studio applications with SourceSafe. We
will see what the best structure for Visual Studio solutions is when working under Source Control.

Chapter 4 discusses the various ways you can add a software project to the SourceSafe database.
This is the first step you'll take when starting to develop an application under Source Control.

Chapter 5 covers the Source Control operations used daily in our development activities. We'll set
up a new workspace and get the solution from the SourceSafe database. Then, we will add new
files to the solution, check them in, examine their history, and get latest versions. We will also
explore the team-cooperation models and see what are the differences between them, their
advantages and disadvantages, and operations such as item comparison, undoing changes, file
merging and pinning, and conflict resolution.

Chapter 6 teaches you how to access the SourceSafe server through the intranet or the Internet, in
order to perform the necessary Source Control tasks. If you don't have an internet connection at
the remote location, or if the local SourceSafe server is temporarily down, you can work offline,
provided you already have the solution files on your remote machine. When a connection to the
database becomes available again, you reconnect to the SourceSafe database and synchronize the
changes. Depending on the database configuration and the Visual Studio plug-ins you use while
reconnecting, there are some scenarios to consider for avoiding data loss. We will examine the
possible scenarios that can lead to data loss and see how to avoid such situations.

Chapter 7 teaches you how to manage the software development lifecycle using SourceSafe. In
the evolution of software products there are many milestones. We will see how to manage them
using SourceSafe so that we can reproduce their specific configurations when needed. We will
also talk about the build process and how a periodical build can catch integration problems early
on. We will take a brief look at white-box and black-box tests and how they help in ensuring final
product quality. Last but not the least, we will see how to maintain multiple product versions to be
able to release service packs while continuing development towards the next versions.

Appendix A covers the installation steps for Visual SourceSafe 2005 and the configuration for
remote access.

Appendix B describes how to perform SourceSafe database administration tasks such as creating
and securing databases, managing database and Windows users, creating shadow folders, and
configuring the services for the SourceSafe plug-ins in Visual Studio.

Appendix C discusses how to perform maintenance tasks on SourceSafe databases such as undoing
user checkouts, changing the team version control model, locking, archiving, restoring, and
running database maintenance tools.

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented
Application

For the purpose of this book I could have used a simple "Hello World" type
application that demonstrated Software Configuration Management with Visual
SourceSafe 2005 and Visual Studio .NET 2005. However, I felt the need to give you
as much value as possible, given the fact that the development process of building
software is rarely so trivial and easy.

So, let's take a more realistic software development scenario. What I am going to
build is a room-reservation system for the newly launched Orbital Hotel. As you
well know, this is the very first space building, after the International Space Station,
used for tourism, allowing people to enjoy a view of our blue planet and stars from
their private rooms. OK, OK, the Orbital Hotel doesn't yet exist, but when it does, it
must have a room reservation system anyway. Who knows, it might be this one.

I will build a prototype for a hotel reservation system outlining the way Software
Configuration Management makes the job easier. Don't worry if you are not fully
familiar with the technologies used. The purpose of this application is purely for

reference, so you can sit back and relax.

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

At this point I will use my time machine and get a screenshot for the final application
so you can see how it will look like. Or, I can insert the screenshot after it finished.

I think the first way seems more reasonable. This is what the public reservation site
looks like:

Orbical'Hobel

Home Mew Reservation My Reservations Login

Reservation period Available rooms

Arrival date:

December 2006 = Number Type Dccup. Price

Su Mo Tu We Th Fr Sa 1 Regular 4 $500.00
Reqgular 5 $600.00
Regular 4 $500.00
Regular 4 $500.00
Regular 4 $500.00
Regular 4 $500.00
Regular 4 $500.00
Regular 4 $500.00
appartment & §1,000.00 [Roarmn far 4 with wonderfull

wigw

Appartrment & $1,000.00 |2 g e
Appartment & $1,000.00

12

If you like it, you can download the application from the book's website:
http://orbitalhotel.alexandruserban.com.

Now let's get back to our time and start the development lifecycle on the Orbital
Hotel product. The first phase is the specifications phase.

Specifications—Project Architecture

In order to build a software system, we need a list of requirements. What is the
purpose of the system? What are the actions performed by the system and against
the system? Who will use the system and how? The answers to these questions will
let us identify the main parts of the system and the way these parts work together.

[58]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

System Requirements

Let's take a look at the Orbital Hotel's reservation system's requirements. The
purpose of the reservation system is to allow guests to make room reservations.
There are several room types each having a number, occupancy, price, availability,
description, and image. The reservations can be made by using the hotel's internet
website, through the websites of travel agencies (third parties), or by making phone
calls to the hotel's client service. Reservations can be also made by internal client
service staff who receive phone calls from guests.

When guests use the hotel's website, they will create a user with a username and
password and input their personal details such as first name, last name, address,
city, zip code, state, country, phone, email address, and card number. Then they will
choose a room and complete the reservation details such as arrival date, the number
of nights they will be staying and the number of adults, teenagers, children, and pets.
They will also be able to cancel their reservation.

When making a reservation over the phone, a guest will provide the same personal
information and reservation details to the hotel's client-service staff. The staff will
create a reservation for the guest using an internal application. The staff members
will also authenticate using a username and password.

Travel agencies and other third parties must also be able to make hotel reservations.

Web Site Internal Th",-d
Parties

Reservation System

Taking a big picture about the type of system we are going to build, what we need

is an application design that will be as flexible as possible. It should provide us with
a variety of options like reservations through phone calls, personal or third-party
websites, smart devices like PDAs or cell phones, and so on. This is where we gather
the specifications and plan the system architecture. In this phase we have to consider
as many aspects as we can, based on our requirements and specifications.

So, let's see what the main existing application architectures are, and see what
application architecture fits our requirements.

[59]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

Application Architectures

The computer and computer programming history is a very short one in comparison
with that of other industries. Although it is short, it has evolved and continues to
evolve very rapidly, changing the way we live. Taking into account the architectures
used at the beginning of computer programming, we can see an evolution from the
single, powerful, fault-tolerant, expensive super mainframe computer applications,
towards multiple, distributed, less expensive smaller machine applications, the
personal computers.

During this evolution, three main application architectures can be identified:

e Compact application architecture
e Component application architecture
e Service-Oriented Architecture (SOA)

We are going to take a brief look at these application architectures and outline
their characteristics.

Compact Application Architecture

During application development for the single mainframe, there was no clear
separation between application layers and no reusable components were used. All
the data access, business logic, and user interface-specific code were contained in a
single executable program.

This traditional compact architecture was used because the mainframe computers
had specific proprietary programming languages and formats for accessing and
manipulating the data.

All the data access-specific procedures as well as the business logic and business
rules code are written in this programming language. At the surface, a user interface
is presented to the user for data visualisation and manipulation.

4 Application
¢ User Interface
» Business Logic
+ Data Access
\\.- — - /
P> (sar] (o) (7] |
[60]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

This application architecture works for applications that do not need data input
from multiple sources and can be easily developed by a single programmer.
However, this approach has several major disadvantages when it comes to building
large-scale systems:

e Application components cannot be reused in other applications because they
are tightly coupled and dependent on one another. Tight coupling means that
in order for a piece of code to use another piece of code, it must have intimate
knowledge about its implementation details.

e Being tightly coupled, a change to one component can affect the functionality
of another, making debugging and maintenance a difficult task.

e The application is actually a black box; no one, except the main developer,
knows what it is in there.

e Applying security is another problem because the user interface cannot
be separated from the business logic components using security-specific
mechanisms like authentication and authorization.

e Application integration is affected because the code is platform dependent.
Integration between two such applications requires special and specific
coding and can be difficult to maintain.

e Scalability issues are considered when the system grows and need to be
scaled across several machines. Using this application architecture, scalability
is not possible as you can't separate different application parts across
different physical boundaries because of the tight coupling.

To address the issues with the compact application architecture, the component-based
application architecture was developed.

Component Application Architecture

In the component application architecture, the application's functionality is defined
using components. A component is like a black box, a software unit that encapsulates
data and code and provides at the surface a set of well-defined interfaces used by
other components. Since a component only needs to support a well-defined set of
interfaces, it can change the inner implementation details without affecting other
components that use its external interfaces. Components that export the same
interfaces can be interchanged, allowing them to be reused and tight coupling to be
eliminated. This makes them loosely coupled because they don't need to know internal
implementation details of one another.

[61]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

This separation of application functionality using components allows the distribution
of development tasks across several developers and makes the overall application
more maintainable and scaleable. In the Windows environment, the most used
component application architecture is the Component Object Model (COM).

Typically, components are grouped into logical layers. For example, an application
uses the data access layer to access the different data sources, the business logic layer
to process the data according to the business rules, and the presentation layer also
known as the user interface layer to present the data to end users.

Using well-defined application layers allows for a modular design, component
decoupling, and therefore the possibility for component reuse.

Ve)
Application

(” Presentation Layer
\ (User Interface) U

[Business Logic Layer W
.

)
L

;- N
Data Access Layer |

Data Access Layer

This architecture forms a chain of layers that communicate with one another. The
base is the data access layer, which is responsible for querying, retrieving, and
updating the data from and to different data sources while providing a uniform data
view to the layers above.

Business Layer

Above the data access layer is the business logic layer. The business logic layer uses
the uniform data provided by the data access layer and processes it according to
the business rules it contains. The business logic layer doesn't need to know from
what source and how the data was obtained. Its purpose is only data manipulation
and processing.

[62]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

Presentation Layer

At the top of the chain is the presentation layer or the user interface layer. Its
purpose is to present the data processed by the business logic layer to end users and
to receive input and commands from these end users. The presentation layer will
propagate these commands down the chain to the business layer for processing.

Characteristics

The component application architecture solves many software problems and it has
been used extensively in the past. But because software evolves continuously, new
requirements introduce new challenges.

Let's suppose we have several applications on different platforms, each incorporating
its presentation layer, business logic layer, and data access layer. We want to
integrate them into a bigger distributed system, a system that spans across several
heterogeneous environments. At some point, one application will need to access

the data existing in another application. While components can work well in a
homogenous environment on the same platform, for example COM in the Windows
environment, problems appear in components working across several platforms. For
example, it is very difficult for a COM component to be used from a Java application
or vice-versa, mainly because they don't speak the same language.

Integration between two or more applications running on different platforms would
require a middle component-dependent intercommunication layer that is expensive,
difficult to build, and reintroduces tight coupling between systems, which is what

we tried to avoid in the first place. Avoiding building this intercommunication

layer would require that the data exchange between these applications be done by a
person who will read the necessary data from the source application and write it into
the target application.

We need to integrate these systems, and maintain the loose coupling between
them. What we need to do, is make these components understand each other,
making them to speak the same language. This is where the concept of services and
Service-Oriented Architecture (SOA) comes into play.

Service-Oriented Architecture

SOA describes an information technology architecture that enables distributed
computing environments with many different types of computing platforms
and applications.

To enable distributed computing environments, SOA defines the concept of services.
A service is a well-defined, self-contained unit of functionality, independent of the
state of other services.

[63]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

Let's see how services can be used to create distributed applications, integrate
component-based applications, and make them communicate with each other. We
keep our data access layer and business logic layer as they are, but we completely
decouple the presentation layer so we can change it later without affecting the other
layers. In order to expose the functionality of the business logic layer, we wrap it in
a service interface. The service interface wraps the business logic layer components
offering a point of access for any process that needs to access the business logic, whose
functionality has now become a service.

Service

Service Interface
Common language

[Business Logic Layer j

it
(Data Access Layer j
< Tl [/
' :
EEE)
.

Service-oriented architecture is basically a collection of services that communicate
with each other. The communication can involve either simple data passing or it
can involve two or more services coordinating some activity. Whatever the required
functionality may be, we have now separated the functionality of applications into
specific units, the services that we use to construct flexible, distributed applications.

Typically services reside on different machines. They are exposed to the outside world
by service interfaces. A service provider provides its functionality using the service
interfaces that are used or consumed by the service consumers. A service consumer
sends a service request to a service interface and receives a service response. The
following figure represents a typical service consumer-service provider request.

Service Request
Service " Service Bus Service

Provider Consumer
Service Response

[64]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

A service can be a service provider and a service consumer at the same time as it can
consume other services. They communicate using a communication medium like

a local area network for internal services or the Internet for external services. This
communication medium is called a service bus.

We saw that services don't have a presentation layer as we've decoupled the
presentation layer from the rest. This presents an advantage because we can
now use any platform able to understand and consume the service to build a
presentation layer. The service interface has to provide a standard and open way
of communication, a common language that both service providers and service
consumers can understand, regardless of the machine type they are deployed on,
their physical location, and the language in which they are written.

XML Web Services

In today's world, the communication standard used to connect services is achieved
using web services. Web services are small, reusable applications that help
computers with many different operating system platforms work together by
exchanging messages. Web services are based on industry protocols that include
XML (Extensible Markup Language), SOAP (Simple Object Access Protocol), and
WSDL (Web Services Description Language).

These protocols help computers work together across platforms and programming
languages enabling data exchange between otherwise unconnected sources:

e Client-to-Client: Devices, also called smart clients, can host and consume XML
web services, allowing data sharing anywhere, anytime.

e Client-to-Server: A server application can share data with desktop or mobile
devices using XML web services over the Internet.

e Server-to-Server: Independent server applications can use XML web services
as a common interface to share and exchange data.

e Service-to-Service: Systems that work together to deliver complex data
processing can be created using XML web services.

[65]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

The following figure shows an example of services exposed using web services,
which deliver their functionality to a wide variety of platforms and applications.

N Mobile
Java Appllcatlon Appllcatlon

Windows Forms

Application
Web Forms
Application

P =,

Y /'/I' h . \ -
Service VE// “‘*-C:-&%’.\/ Service
= &
XML WebService Interface (" XML WebService Interface
XML, | XML,
SOAP, _ 4 SOAP,
WSDL Y, _ WSDL
_ C it
s
[Business Logic Layer) (Business Logic Layer J
i)
/ 3\
K Data Access Layer | (Data Access Layer j
_,-” \
i r J T
ra I_o"’] \'-.
Data Data [— — —
5] (o) - | |

Service-oriented architecture provides us with the maximum flexibility in building
applications. Individual services define specific application functions and interact
with one another to provide the entire business process functionality.

Using service-oriented architecture provides many benefits such as:

Encapsulation: Just as an object encapsulates its internal implementation
details inside while providing public methods to external objects, services
encapsulate their internal complexity and implementation from the service
consumers who don't have to know the internal details.

Mobility: As services are independent and encapsulated, they can

be deployed in any location. Since they are using the same standard
communication language, they are accessed in the same way irrespective of
their physical location or implementation details.

Parallel development: A service-oriented application is built using several
service layers and clients. These application components can be built in
parallel by developers specialized in specific layer functionality, speeding up
the development process.

[66]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

e Platform independence: Service providers and service consumers can be
written in any language and deployed on any platform, as long as they can
speak the standard communication language.

e Security: More security can be added to a service-oriented application at the
service interface layer. Different application components require different
security levels. The security can be enforced by using firewalls configured
to allow access only to the required service providers only by the required
service consumers. In addition, by using Web Service Enhancements (WSE),
authentication, authorization, and encryption can be easily added.

¢ Reusability: Once a service is constructed and deployed, it can be used by
any other service consumer without problems related to platform integration
and interoperability.

Choosing an Application Architecture

Now that we have seen the existing application architectures, we must choose one
that meets our project requirements. As you may have guessed by this point, the best
application architecture we can use for our project is a Service-Oriented Architecture
(SOA). The SOA allows us to build a distributed system, a system that has great
flexibility and interoperability with other systems on other platforms. This will allow
us to build the business logic functions and expose them as services that will be used
by higher functionality layers.

Choosing an Application Platform

After choosing our application architecture, we must choose a platform capable of
building and supporting it. For the purpose of our system we will choose the Microsoft
NET Framework platform and build the system using Microsoft Visual Studio.NET
2005 and Microsoft SQL Server as the back-end database for storing the data.

Microsoft .NET Framework

From a Service-Oriented Architecture point of view, the .NET Framework is the
Microsoft strategy for connecting systems, information, and devices through
software such as web services. .NET technology provides the capability to quickly
build, deploy, manage, and use connected, security-enhanced solutions through the
use of web services.

Intrinsically, the .NET Framework is an environment for development and execution
that allows different programming languages and libraries to work together to create
Windows-based applications that are easier to build, manage, deploy, and integrate
with other networked systems.

[67]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

The .NET core components are:

¢ The Common Language Runtime (CLR): A language-neutral development
and execution environment that provides a consistent model and services to
manage application execution that includes:

o

Support for different programming languages: A variety of
over 20 programming languages that target the CLR, such as
C#, VB.NET, and J#, can be used to develop applications.

Support for libraries developed in different languages:
Libraries developed in different languages integrate
seamlessly, making application development faster
and easier.

Support for different platforms: .NET applications are not tied
to a single platform and can be executed on any platform that
supports the CLR.

Enhanced security: The .NET Code Access Security model
provides a managed environment for application execution
and security.

Automatic resource management: The CLR automatically
handles process, memory, and thread management, enabling
developers to focus on the core business logic code.

e The Framework Class Libraries (FCL): An object-oriented library of classes
that extends a wide range of functionality including;:

o

Support for basic operations: Input/output and string
management, standard network protocols, and network
standards such as TCP/IP, XML, SOAP, and HTTP are
supported natively to allow basic operations and
system connections.

Support for data access and data manipulation: The FCL
includes a range of data access and data manipulation classes
forming the ADO.NET technology that natively supports
XML and data environments such as SQL Server and Oracle.

Support for desktop applications: Rich desktop and mobile
client applications can be easily created using the Windows
Forms technology.

Support for web applications: Thin web clients, websites, and
web services can be created using web forms and XML web
services technologies that form ASP.NET.

[68]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

4 D
Windows Web XML Web
Forms Forms Services
ASP.NET

Data Access and XML Classes (ADO.NET)

Base Classes

Common Language Runtime (CLR)

L .NET Framework /
N

Operating System

-

In the planning phase we've gathered the project requirements and specifications and
we've also chosen an application architecture. The next phase is the design phase.

Designing the System

In the design phase, we will create an application design based on the application
architecture, project requirements, and specifications. Gathering all the information
needed to design the system is a difficult task, but the most important step is to start
writing down the first idea.

System Structure

The system will be composed from the following main component categories:

e Core components (Data Access Layer, Business Logic Layer) forming the
middle-tier component layers.

o Web service components (XML Web service) forming the Service
Interface layer.

o Website components (ASP.NET website) forming the front-end IWebReservation
application, a web presentation layer.

o Windows Application components (Windows Forms Application) forming the
WinReservation application, a Windows presentation layer.

[69]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

The following figure illustrates the overall system structure, outlining each
system component:

Web Reservation Win Reservation
& =
Third parties
. (—
Web Site Internal
(ASP.NET) (Windows Forms)

XML, SOAP

Reservation Service
(XML Web Service)

i

/

Business Logic Layer
SQL S
QL Server (.NET Components)

&

>‘4 Data Access Layer
(ADO.NET)

Reservation System

OrbitalHotel

Database

As we saw earlier, one major advantage of a service-oriented application is the
decoupling of the presentation layer from the business logic layer. This allows for the
business logic layer being exposed as a web service to be used by other third parties
to integrate its functionality into their business process.

Database Structure
The back-end database is hosted by a Microsoft SQL Server system. According to
the project specifications the internal database structure will be composed of the
following database tables:

e User (Contains the user accounts)

e Guest (Contains the personal details of the guests)

e Room (Contains the details of each of the hotel's rooms)

e Reservation (Contains the details of the reservation made by each user)

[70]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

The following figure illustrates these tables and the relations between them. The bold
fields are mandatory (not NULL).

Gusst Reservation
PK_|GuestiD PK | ReservationlD
FirstName FK1 | RoomID Room
LastName FK2 |UseriD
Address1 FK4 | GuestiD PK | RoomID
Address2 User Arrival
City . Type
ZipCode PK | UserlD 2:;?;? — Number
gtate t — UserName o B— Teenagers g?cupancy
ountry Password Children rice
Phone T ¢ Pet Available
Email ype ets Description
Active FK3 | CanceledByUserlD
CardNumber Image
FK1 |UserlD
The User table contains the following rows:

UserID The user identifier used as the primary key of the User table.

UserName The user name.

Password The user password.

Type The user type, such as Guest, Internal, or ThirdParty.

Active User accounts can be active or they can be deactivated

according to business rules.

The Guest table contains the following rows:

GuestID The guest identifier used as the primary key of the
Guest table.

FirstName The first name of the guest.

LastName The last name of the guest.

Addressl The first line of the address of the guest.

Address2 The second line of the address of the guest. This field can
have a null value.

City The guest's city.

ZipCode The guest's zip code.

State The guest's state.

Country The guest's country.

[71]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

Phone
Email
CardNumber

UserID

The guest's phone number.
The guest's email address used for reservation confirmation.
The guest's credit or debit card number used to bill the guest.

Contains the guest's user identifier, if the guest has a user
account. This field can have a null value if the guest's data is
entered by a hotel staff member, and is a foreign key of the
User table.

The Room table contains the following rows:

RoomID
Type
Number

Occupancy

Price

Available

Description

Image

The room identifier, used as a primary key of the Room table.
The room type such as Single, Double, etc.
The room number.

The room occupancy, containing the number of guests it can
accommodate.

The price of the room.

The room availability. Some rooms may not be available due
to repairs or other events.

The room description. This field can have a null value.

The room image. This field can have a null value.

The Reservation table contains the following columns:

ReservationID

RoomID
UserID

GuestID

Arrival

Nights

Adults

Teenagers
Children

Pets
CanceledByUserID

The reservation identifier, used as a primary key of the
Reservation table.

The reserved room identifier, a foreign key of the Room table.

The identifier of the user that made the reservation, a foreign
key of the User table. This is required because hotel staff can
make reservations for guests too.

The identifier of the guest for whom the reservation was
made, a foreign key of the Guest table.

The arrival date.

The number of nights for the reservation
The number of adults.

The number of teenagers.

The number of children.

The number of pets.

The identifier of the user that canceled the reservation, a
foreign key of the User table.

[72]

For More Information:

http://iwww.packtpub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

After creating the back-end database structure we create the Visual Studio .NET
solution structure for our project.

Visual Studio .NET Projects and Solutions

Before we start organizing the source code structure of our system, it is important to
understand how Visual Studio .NET organizes and manages source code locally and
by using a source control provider such as Visual SourceSafe.

Visual Studio .NET Projects

Visual Studio .NET uses projects to organize and manage the configuration, settings,
and the build process that generates a .NET assembly. Assemblies are collections

of types and resources that are built to work together forming a logical unit of
functionality. They are the building blocks of any .NET application and form a
fundamental unit of deployment, version control, reuse, and security.

Depending upon the project language, Visual Studio .NET projects have different
file extensions such as . csproj for C# or . vbproj for Visual Basic .NET. Although
there are many project types such as class libraries, console applications, Windows
applications, websites, or web services, projects fall into two main project categories:

e Non-web projects

e Web projects

Non-Web Projects

Non-web projects, sometimes called Windows projects, are application projects that
do not necessarily deliver content to web browsers and do not need a web server

to run. These include projects like Windows applications, console applications, and
Windows services. Non-web projects can run from any system folder without any
additional configuration.

Class Library Windows Console
Control Library Application

[73]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

Web Projects

Web projects are application projects that deliver their content to web browsers and,
in order to run, need a web server. In this category are websites and web services.
Web projects usually live inside a web server's virtual folder and are usually referred
to using a URL path.

2 @ 2 e

sci =ci sci ch
{ASP.NET Web! ASP.NET Web Personal Web Empty Web
H Site Service Site Starter Kit Site

Visual Studio .NET Solutions

Because larger applications are built using multiple projects, Visual Studio .NET uses
solutions to group projects together. Solution files have a . s1n extension. Apart from
grouping projects together, solutions maintain project dependencies controlling the
order-dependent projects that are built.

A project can be part of one or more solutions but solutions
s can't be part of other solutions.

The following figure shows a solution including a class library project (1), a
Windows application (2), a console application (3), a web service (4), and a Windows
application (5) project:

qul ution Projects

A/L__|1'|2_|3 la s
A2 2
L3

Dependenciese—_~ o~

Projects will be built starting with the ones that are not dependent on other projects
and continue on the dependency chain until all the projects are built.

Project 1 is not dependent on any other project. Projects 2, 3, and 4 are dependent on
project 1. Project 5 is dependent on project 4. The solution maintains the dependency
between projects so if we, for example, build project 5, project 1 and project 4 will

be built first and project 5 will be built last. This ensures project 5 is built against the

latest versions of the other referenced projects.

[74]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

The solution that contains all the projects is called the master solution. The master
solution ensures the final application is built by rebuilding the latest version of each
individual project.

Partitioning Solutions and Projects

When dealing with solutions that contain a large number of projects developed
by several teams, having a single master solution is not always the best option for
development. In our example, the teams that work on project 1 don't need to have
the other projects in their solution. Likewise, the teams that develop the Windows
applications don't need to have the web applications in their solution. For this
purpose, solutions and projects can be partitioned.

There are three main models for solution and project partitioning:

e Single solution
e Partitioned single solution

e Multi-solution

Single Solution

Using a single solution model is the easiest and the recommended way to contain
all the projects in the application. The projects reference each other directly using
project references instead of a file reference to a project assembly already built
outside the system. This avoids assembly versioning because a referenced project
is automatically rebuilt by Visual Studio .NET, if changes are made to it. Changing
between solution configurations (release, debug) and application rebuilding is also
very simple.

Master Solution

j_lylz I3 |4 |s
ol B2

However, this model has its disadvantages when it comes to a large number of
projects. For example, if we want to work on a single project in the solution we are
forced to get the source code for all the projects. Minor changes to a base project
trigger the rebuilding of all dependent projects. Unnecessary rebuilds for solutions
containing many projects can be very time consuming,.

[75]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

Partitioned Solution

For larger applications where the master solution has many projects, we can
eliminate the disadvantages associated with the single master solution by
partitioning the projects using subsolutions and creating a partitioned solution.

Each subsolution contains the projects associated with a logical application
sub-system. The following figure shows how related projects can be grouped
into subsolutions:

Master Solution

j'|1|

2 |3 la |s
il ol W S 2
1

P MM

Windows Web Service Web Site
Solution Solution Solution

The Windows solution contains the projects 1, 2, and 3, associated with the
development of the Windows sub-system. The web service solution contains projects
1 and 4, associated with the development of the web service sub-system. The website
solution contains projects 1, 4, and 5, associated with the development of the website
sub-system. Note that project 1 is a part of three solutions while project 4 is a part of
two solutions.

The master solution is used to build the entire system, containing all the
application projects.

Each subsolution contains logically grouped projects that reference each other using
project references. This presents all the advantages of project references and allows
development on individual subsystems without the need to have all the projects in
the solution.

Note that we cannot group projects randomly. Projects must be grouped following
the reference chain. In order to work on a top-level project we must include in the
subsolution all the project referenced by the top-level project. For example, when
working on project 5, we need to have project 4 and project 1 in the solution too,
in order to use project references. But when working on project 1, which does not
reference any other projects, we can create a subsolution containing only project 1.

Also, when adding new projects to the master solution, we must manually add them
to the other subsolutions that reference these projects.

[76]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

Multi-Solution

The multi-solution model is similar to the partitioned solution. The difference is
that there is no master solution and projects outside a solution are referenced using

external file references.

The following figure shows the multi-solution model:

ezl

I .

2

P P
Windows Web Service Web Site
Solution Solution Solution

. 1 2 3 4 5
f_rcﬂ =chl LZcCH ;@

The Windows solution uses project reference between the contained projects.

However, the web service solution containing only project 4, references project 1
using an external file reference, a reference to an already built assembly for project 1.

The same case applies for the website solution that contains only project 5. Project
1 and 4 are referenced using external file references to already built assemblies for
project 1 and 4.

With this model, a project is included in only one solution. Adding or removing
projects is easier as we don't have to add or remove them from every solution they
are part of.

Projects can be grouped in any way, unrelated to the way projects reference one
another. This allows for a system subdivision according to any criteria.

This model has its disadvantages too. Solutions use file reference instead of project
reference. File references do not set up build dependencies and build order. The
build process must be handled separately and adds more complexity when building
the solution.

Best Practices for the Solution Physical Structure

To ensure that the development and build processes work effectively in a team
environment, it's essential to start with a correct solution folder structure that is
consistent across all the development workstations and build servers.

[77]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

Failure to create a well designed solution folder structure will result in problems in
the later addition to a source control provider repository and the recreation on

other machines.

Hierarchical Folder Structure

The best way to organize a solution in order to be consistent across source control
repositories, workstations, and servers is to use a hierarchical folder structure, where
the solution is the root and the projects are sub-nodes. This structure ensures there

is a symmetrical correspondence between the physical solution structure in the
workspaces and the structure in the source control repository.

The solution is created in a root folder and the individual projects are created in
subfolders below the root folder. The Solution folder contains the master solution
file Solution.sln. The individual project folders are under the Solution folder.

Elle Edit ‘iew Favorites Tools Help

|
D

M= |

B% C:\Software'Solution

OBack =) = 5 | -~ Search | * Folders | [ar

Address I_} CihSofbware) Solution

=] e

1) WebService

Folders LS
SR E< ot o
|0 ClassLibrary
|0 Consoleapplication
1

) ClassLibrary

|2 ConsoleApplication

) wWebService
) Website

I WindowsApplication

-)
) websits _,;JSolutmn.sIn
10 Windowsapplication -

|6 objects (Disk free space: 1.73 GE) |6.50 KB | J My Conputer

4

You can see that the web projects (WebService and WebSite) too are in this
hierarchical structure and not under the default ¢: \ Inetpub\wwwroot folder, which
is the default root folder for Internet Information Services (IIS) web server. Let's see

how this configuration is created.

[78]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

Creating Web Projects

To maintain the hierarchical solution structure we must create all the projects in a
specific solution under the solution's folder. For non-web projects this is achieved by
default by Visual Studio .NET when creating such projects.

Web projects, however, can be created in multiple ways using different locations
such as:

e File system
e Local IIS
e FTPsite

e Remote site (using Front Page Server Extensions)

Visual Studio does not support source control integration
when using FTP sites.

. Source control integration for remote sites is supported,
% but this requires either installing Visual SourceSafe on
=" the remote machine or using light locking mechanisms
provided by FrontPage. Also additional configuration
is required on the remote machine after creating the
web projects.

The best way to work with source-controlled web projects is to use one of the first
two options, File System and Local 1IS. A new web project can be added using the
Add New Web Site dialog window by selecting File | Add | New Web Site.
The Add New Web Site dialog window requests the type of the web project and
its location.

[79]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

Using the File System

The file system location is selected in the dialog window's bottom Location area
using the left combo box. The file system path is specified using the right combo box
and must be under the solution's folder:

New Web Site [7] |

Templates:

¥isual Studio installed templates

2 2 2 @ 2

ASP.MET ASP.MET Personal Emply Weh LING ASPLMET
Weh Site Web Service Web Sit. . Sike ASP.M... Crysk,..

My Templates

2 2 D H

Personal ASPLMET ik Cormmerce Time Search
Web Sit,,. ‘Atlas'W... ASP.ME... StarterKit Tracker... Online Te...

| & blank ASP.NET Weh site

Location: IFiIe Syskem j I CihSoftwarelSolution Website

Language: I'\-'isual [« "l

oK I Cancel |

In the Solution Explorer window of Visual Studio .NET we can see the following
solution structure:

2P O webSitel,

f,-*ﬂ ClassLibrary

.Eﬂ Consolenpplication
£ .f,_-*ﬂ ‘WwindowsApplication

£ Salution .. I'ﬁclass Yiew | S Properties

Note that the names of the web projects represent the physical path on the local
file system.

[80]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

Using Local lIS

The local IIS location is selected in the dialog window's bottom Location area
using the left combo box. The HTTP path is specified using the right combo box or

clicking Browse:

Add New Web Site EHE |

Language: I\-'isual c# 'I

Templates;
¥isual Studio installed templates
L* L@ lz‘, - &
|=ch .%cﬁ‘ \=ch % s | }3*
ASP.MET ASP.MET Personal Emply ‘web LIMNG ASP.MET
Web Site Web Service Web Sit,., Sike ASPLML., Crysk,.,
My Templates
[* = .
\=ch =ch =c# =
Personal ASPMET Wik Commerce Time Search
Wb Sik... ‘atlas'w... ASP.NE... Starter Kit Tracker... Online Te...
& blank ASP.MET Web site
Location: IHTTP j I hittp: fflocalhost fvwebSite

[o]4 | Cancel

Note, however, that if we click OK in this state, the physical WebSite folder
will be created under the C:\Inteptub\wwwroot folder, breaking the solution

folder structure.

To create the folder hierarchically under the solution folder we must take
additional steps and create a virtual folder that will map the physical folder in our

folder structure.

[81]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

After clicking on the Browse button another dialog window presents us the view of
the local IIS Default Web Site structure:

Choose Location HE I

Local Internet Information Server

—X Select the Web site you want to open. \‘i], Ld 4
File: Swstem

" M Local web Servers
h:l SRE Default e Site
- _private

oa i [aspnet_dlient
e ‘&], ccnet
e - CertCantral
FTF Site - CertEnrall
‘) ‘fi', ety
hittp: -—-J Rpc
Remote Site - RpwithCert

- Sourcesafe
- Microsoft SharePoint Administration

[Use Secure Sockets Laver

Open I Cancel |

We create a virtual folder by selecting the folder node under which we want to create
the virtual folder, typically the Default Web Site node, and clicking the second
button in the top right window area. Another dialog window asks us for an Alias
name and a Folder path. We must specify a folder path under the solution's folder.

Mew ¥irtual Directory HE

Alias name:

| wehSite

Folder:

I C:15ofbware) Solution!Website Browse, ., |
: Zancel |

[82]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

[The Alias name and the Folder name must match.

We then click the OK button of the New Virtual Directory dialog and select

the newly created virtual directory in the Choose Location dialog. To finish the
operation we click the Open button of the Add New Web Site dialog window. The
web project will be created in the virtual folder under the solution folder.

In the Solution Explorer window of Visual Studio .NET we can see this
solution structure:

Solution Explorer

= | o

] colution "Solution’ (5 projects);
H- (L ClassLibrary

- _Eﬂ Consoleapplication

- _ﬂ' http:/flocalhost iwebZervice)
- _ﬂ' http:fflocalhost website)

- E‘ﬂ WindowsApplication

8 EE-E

£ Salution .. J'x__f_"gclass Yiews | Z5f Properties

Note that the names of the web projects represent their URLs in the local IIS server.

File System versus Local IIS

The main difference between the file system location and the local IIS location is the
web server used for running the web project when developing the project.

When using the file system location, the ASP.NET Development Server is used.
Each web project in our solution is run by an individual ASP.NET Development
Server. This web server is started automatically when we run the web project for the
first time.

jr,) ASP.NET Development Server E
http: fflocalhost: 1182 W ebSite
i - l\

When using local IIS, the local Internet Information Services web server is used to
run all the web projects in our solution.

[83]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Creating a Service-Oriented Application

While developing several web projects, using an individual web server for each one
presents the advantage of being able to debug all of them at the same time. When
using a single server, a debugging session affects all the web projects the server runs
and only one project can be debugged at a time.

When solutions that contain local disk web projects are added to source control,
Visual Studio automatically creates in the source control database a folder structure
that will match the hierarchical structure on the local disk.

Mz The best way of developing web projects is by using
Q the file system method with the local ASP.NET

Development Server.

Creating the Orbital Hotel Solution

After considering the best structure of Visual Studio .NET solutions we can now
create the solution structure for our Orbital Hotel reservation system product.

I will use a single (master) solution because our example has a small number of
projects,

and divide the solution folder structure into the following sections, mapping the
system's design:

% C:\Software',OrbitalHotel

File Edit \Miew Favorites Tools Help | f,'
Qeack - o) - T | ' search ||~ Folders | [
Address I. Ik Cirbika j a Go
Folders X | I Core
= 123 orbitalHatel -] “:'WEES?W'EES
B) Care JW?& IjSll:es e
3 BusinessLogic) wWindowsapplications

£ Common _:%OrbitaIHDtel.sln

) Datadccess
=l 1) WebServices
|Z) Reservationservice
= 1) webSites
|2 WebReservation
=l 1) Windowsapplications
I2) WinReservation -

|5 objects (Disk free space: 1,65 GE) 17.0 KB | J Iy Compuker 4

[84]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Chapter 3

The OrbitalHotel folder is the root folder for the solution. Note an intermediary
set of folders named Core, WebServices, WebSites, and WindowsApplications
that contain the individual solution projects. These folders contain the main
system components.

The following figure shows the detailed master solution structure in the Visual
Studio .NET Solution Explorer window:

Solukion Explarer

Solution "OrbitalHotel’ (6 projects)
¢ Core

¥ E BusinessLogic

- .E Cammaon

- E Databccess

WebServices

_ﬂ' Ci. . ReservationService),

¢+ Websites

_ﬂ' 4 WwWebReservation

¢ WindowsApplications

.E ‘WinReseryation

-:jﬂSu:ulutiu:un Explorer]ﬁ Class Yiew |fﬁPru:uperties

You will also notice that the web projects are created using the local file system
instead of IIS. This configuration allows us to run the web projects without having to
install IIS and configure virtual directories that match the physical project locations
on the development machines and, as we saw earlier, we are able to debug multiple
web projects at the same time. Also, using local file system web projects will help
later to create a project structure in the source control database matching the
structure on the local disk.

You can also see how the physical solution structure maps the logical solution
structure in Visual Studio.NET.

[85]

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Summary

In this chapter we started the development lifecycle for the Orbital Hotel product.

The first phase is gathering the system specifications. Once the specifications

are clear we analyze them and decide which application architecture is the most
appropriate for its implementation. For the Orbital Hotel application, service-
oriented architecture is the most appropriate because it allows the greatest flexibility
and interoperability.

We then moved on to the design phase and designed the system's structure and
components. We saw that when creating the Visual Studio .NET solution, we must
take into account the best structure for solutions that will be developed under source
control by multiple team members.

The best structure is the hierarchical solution structure that maps directly into the
source control database and is the same on all the development machines preventing
binding problems especially for web projects. The best way to develop web projects
is by using the local file system and the ASP.NET Development Server because they
are created in the same hierarchical folder structure as the solution and because it
avoids supplementary IIS configurations.

At the end, we've created the Orbital Hotel solution structure based on all the best
practices we've seen in this chapter.

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

Where to buy this book

You can buy Configuring IPCop Firewalls: Closing Borders with Open Source from the Packt
Publishing website: http://www.packtpub.com/visual-sourcesafe-2005/book

Free shipping to the US, UK, Europe, Australia, New Zealand and India.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and most internet
book retailers.

PUBLISHING

www.PacktPub.com

For More Information: http://www.packipub.com/visual-sourcesafe-2005/book

http://www.packtpub.com/visual-sourcesafe-2005/book

	http://www.packtpub.com/visual-sourcesafe-2005/book

